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ABSTRACT
Cross-coupling of γ-acylated sinapyl alcohols and 
sinapyl alcohol produces novel β–β-coupled products. 
Such structures are readily identified by HSQC NMR in 
isolated lignins (palm, kenaf and corn MWLs) containing 
γ-esters. This finding suggests that γ-acylated sinapyl 
alcohols are incorporated into lignins as monomers.

INTRODUCTION
The primary lignin monomers are the three monolignols, 
p-coumaryl, coniferyl and sinapyl alcohols. Polym-
erization of these monolignols by radical coupling 
catalyzed by plant peroxidases and/or laccases results in 
complex polymers (lignins) with various compositions 
and proportions of inter-unit linkages.1 Lignin has been 
studied for more than a century but there is still a lot 
unknown about its structural and biological details.2-4 

Lignins of many agriculturally important crops and 
woody plants have their sidechain primary alcohol (or 
γ-OH) acetylated, p-hydroxybenzoylated or p-coum-
aroylated.3-5 The biochemistry of such acylation remains 

unresolved and the genes associated with the presumably 
involved transferase enzymes are unknown. As genes 
controlling various processes and the functions of such 
acylation are sought in order to improve the utilization 
of plant resources, it has become important to resolve 
whether monolignols are first acylated to produce ester 
conjugates that are then incorporated into lignin by free-
radical coupling or cross-coupling reactions, or whether 
acylation occurs following the monolignol radical 
coupling reactions or on the lignin polymer itself.6,7 
We have provided preliminary evidence that the high 
level of γ-acetylation in Kenaf lignins arises, at least in 
significant part, from pre-acetylated sinapyl alcohol,8 and 
have provided at least good circumstantial evidence for 
monolignol p-coumarates in grasses.9,10 Here we report 
our observation of novel β–β-structures in isolated 
lignins from palm, kenaf and corn cell walls.

RESULTS AND DISCUSSION
Lignification in plant cells starts with dehydrogenative 
dimerization of monolignols and/or with cross-coupling 
between a monolignol and a ferulate.4 The growth of a 
dehydrodimer continues primarily through cross-coupling 
with a monolignol radical, i.e. so-called “end-wise” 
polymerization.2,11 Dehydrodimerization of coniferyl 
alcohol produces three dehydrodimers (β–O–4, β–5 and 
β–β) while only two dehydrodimers (β–O–4, β–β) are 
formed from dehydrodimerization of sinapyl alcohol. In 
addition to these three coupling modes (producing three 
types of inter-unit linkages), other inter-unit linkages 
found in lignin polymer include 5–5, 4–O–5, and β–1. 
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Figure 1. Radical coupling reactions of sinapyl alcohol 1 and γ-acylated sinapyl alcohols 2 produce β–β-coupled products 3-7, suggesting 
that the structures could all be found in lignins incorporating γ-acylated monolignols. Compound 5a has been found in actively lignifying 
xylem tissue in poplar, and here we provide NMR evidence for the other acylated sinapyl alcohol 2 products.



The β–β-coupling dehydrodimerization from coniferyl 
alcohol or sinapyl alcohol produces pinoresinol or 
syringaresinol. When the γ-OH of a monolignol is 
acylated, β–β-coupling can still presumably occur (the 
γ-OH is not required for the radical coupling step; the 
propenyl analog isoeugenol, for example, will also 
undergo β–β-coupling),12 So the homo-dehydrogenative 
β–β-coupling of γ-acylated sinapyl alcohol forms an 
intermediate bis-quinone methide QM22 (Figure 1), 
but the re-aromatization reactions following the radical 
coupling step can no longer be driven by the internal attack 
of the γ-OH on the quinone methide intermediate because 
the γ-acetylation prevents such a reaction. Consequently, 
one quinone methide rearomatizes by external water 
addition, as is typically seen following β–O–4-coupling, 
forming a α-OH that inter-molecularly adds to another 
quinone methide to form a tetrahydrofuran with isomer 6 
as a major product. However, the cross-coupling reaction 
between sinapyl alcohol 1 and a γ-acylated sinapyl 
alcohol 2 produces quinone methide intermediate QM12. 

At this point there is an internal OH capable of trapping 
one quinone methide moiety, forming a γ–O–α-ether 
while the other (B-ring) quinone methide rearomatizes 
by external water addition to form the α-OH, producing 
isomeric products 4 and 5.

Coupling reactions involving monolignols strongly favor 
homo-dehydrodimerization; cross-coupling reactions 
can be difficult to achieve.13 However, peroxidase-H

2
O

2
 

oxidation of equimolar amounts of sinapyl alcohol and 
γ-acylated sinapyl alcohol 2 produced a satisfactory 20 
to 30% isolated yield of the cross-coupled products 4-5. 
The ratio of products 3:(4+5):(6+7) was essentially 1:2:1 
suggesting that the coupling reactions were insensitive to 
the acylation of the γ-OH.

The novel β–β-cross- and homo-coupled products 4-7 
from peroxidase-H

2
O

2
 oxidation of mixture of sinapyl 

alcohol 1 and γ-acylated sinapyl alcohol 2 imply that 
these structures may be present in lignins if γ-acylated 
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Figure 2. Model compounds 4M, 5M and 7M
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Figure 3. HSQC NMR showing the β (13C
β
–H

β
) correlations of novel β–β-coupled structures produced from γ-acylated sinapyl alcohols in 

MWLs of palm (A1), kenaf (A2) and corn (A3). HSQC NMRs of methylated and acetylated model compounds (right column; individual 
spectra of compounds 4M, 5M and 7M are overlaid) are compared with MWLs (left column). [Note: the electronic version has this figure 
in color, which substantially helps clarify the information presented; see also http://www.dfrc.ars.usda.gov/DFRCWebPDFs/2005-Lu-
ISWPC05.pdf].
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Figure 5. HSQC NMR showing the α (13C
α
–H

α
) correlations of novel β–β-coupled structures produced from γ-acylated sinapyl alcohols 

in MWLs of palm (E1), kenaf (E2) and corn (E3). HSQC NMRs of methylated and acetylated model compounds (right column; individual 
spectra of compounds 4M, 5M and 7M are overlaid) are compared with MWLs (left column). [Note: the electronic version has this figure 
also in color — see Fig. 3 caption].

Figure 4. HSQC NMR showing the γ (13C
γ
–H

γ
) correlations of novel β–β-coupled structures produced from γ-acylated sinapyl alcohols 

in MWLs of palm (C1), kenaf (C2) and corn (C3). HSQC NMRs of methylated and acetylated model compounds (right column; 
individual spectra of compounds 4M and 5M are overlaid) are compared with MWLs (left column). [Note: the electronic version has 
this figure also in color — see Fig. 3 caption].
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sinapyl alcohols 2 are incorporated as monomers 
during lignification. Cross-coupled product 5a has 
been recently found in actively lignifying xylem tissue 
in poplar providing compelling evidence that sinapyl 
p-hydroxybenzoate must be a lignin monomer in the 
lignin (or lignan) pathway.14,15 This finding encouraged 
us to carefully reexamine lignins in which esters have 
been found. Therefore three isolated lignins have been 
prepared from palm empty-fruit bunch fiber, kenaf bast 
fiber and corn stem cell walls according to published 
procedures.9,16,17 In order to identify these novel β–β-
structures potentially in lignin by NMR, β–β-coupled 
model compounds 4-7 were made from peroxidase-H

2
O

2
 

oxidation of sinapyl alcohol 1 and γ-acylated sinapyl 
alcohols 2. The structures of 4-7 were identified by the 
normal array of 1D and 2D (HSQC, HMBC, COSY) 
NMR experiments. Etherified and acetylated 4-7, 4M-
7M (Figure 2) were synthesized to provide ideal models 
for identifying these novel structures in acetylated lignins 
(in which they are typically 4-O-etherified). Therefore 
HSQC NMR spectra of 4M-7M were recorded at high 
resolution. The diagnostic sidechain regions of the HSQC 
spectra were compared with the corresponding regions 
of the three lignin samples from palm, kenaf and corn 
(Figure 3-5).

From the HSQC NMR spectra of the lignin samples in 
Fig. 3 (left column), it is obvious that all β (13C

β
–H

β
) 

correlations corresponding to the novel β–β-structures 
are observed and identified by comparison with the 
synthesized model compounds 4M, 5M and 7M (right 
column). Aspen lignin also contains structures 4a, 5a 
(spectra not shown here). One curious aspect however 
remains. Although peroxidase-H

2
O

2
 oxidative coupling 

of sinapyl alcohol 1 and γ-acylated sinapyl alcohol 2 
produces compound 5 as the major isomer, palm and 
kenaf lignins contain slightly more of structure 5 than 4 
while corn lignin has comparable amount of structures 
4 and 5. It was surprising to note that only structure 7, 
which is a minor isomer produced by the peroxidase-
H

2
O

2
 oxidative coupling reaction of γ-acylated sinapyl 

alcohol 2, can be found in lignin samples. As we know 
so far, stereochemistry involved in lignin biosynthesis is 
under kinetic control and the isomer ratios of β–O–4 and 
β–β (resinol) in lignin are consistent with in vitro results.4 
The neo-olivil structure (guaiacyl analogue of compound 
7) was found in a spruce lignin preparation,18 although 
in relatively small amounts compared to pinoresinol. It 
is difficult at present to understand why the neo-olivil 
structure is formed in spruce lignin since in vitro radical 
coupling reaction of coniferyl alcohol has never produced 
neo-olivil. Also why structure 6 cannot be detected in 
these lignin samples is still unknown. Whether there is a 
protein controlling the β–β-coupling reaction, or whether 
specific conditions produce only compound 7 from the 
β–β-coupling reaction of γ-acylated sinapyl alcohol 
awaits further investigation. 

HSQC spectra in Figures 4 and 5 show the γ (13C
γ
–H

γ
) 

and α (13C
α
–H

α
) correlations of these novel β–β-coupled 

structures found in palm, kenaf and corn lignins. The γ 

(C–H) correlations for structure 7 are buried under the 
overwhelming signals corresponding to β–O–4-ether 
structures and are not shown in Figure 4. 

CONCLUSIONS
We have found and identified novel β–β-structures in 
palm, kenaf and corn lignins. These structures apparently 
derive from β–β-coupling involving γ-acylated sinapyl 
alcohols, providing compelling evidence that γ-acylated 
sinapyl alcohols are incorporated into lignin as such, and 
therefore must be regarded as authentic lignin monomers 
in these plants.

EXPERIMENTAL
Lignin NMR spectra were run on a Bruker DRX-600 
equipped with a cryoprobe for enhanced sensitivity. 
Model compound spectra were run on a Bruker DRX-
360. Conditions for HSQC experiments were standard.

Peroxidase-H
2
O

2
 oxidative coupling reactions of sinapyl 

alcohol or/and acylated sinapyl alcohols were performed 
according to previously described procedures.8,15

Synthesis of model compounds 4M, 5M and 7M
Compounds 4Mb, 5Mb and 7Mb were made from 4b, 
5b and 7b respectively by methylation (MeI-K

2
CO

3
, 

acetone) and acetylation (Ac
2
O-Py). Compounds 

4Ma, 5Ma and 7Ma were synthesized from sinapyl 4-
acetoxybenzoate and sinapyl alcohol by peroxidase-H

2
O

2
 

oxidation, followed by methylation and acetylation. 4Mc, 
5Mc and 7Mc were obtained in the similar way starting 
from sinapyl 4-acetoxycinnamate.
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